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The problem of track-to-track association and track fusion has

been considered in the literature where the fusion center has access

to multiple track estimates and the associated estimation error

covariances from local sensors, as well as their crosscovariances.

Due primarily to the communication constraints in real systems,

some legacy trackers may only provide the local track estimates

to the fusion center without any covariance information. In some

cases, the local (sensor-level) trackers operate with fixed filter gain

and do not have any self assessment of their estimation errors. In

other cases, the network conveys a coarsely quantized root mean

square (RMS) estimation error of each local tracker. Thus the fusion

center needs to solve the track association and fusion problem

with incomplete data from legacy local trackers. The problem of

track fusion with legacy track sources which lack covariances is

handled by reconstructing them using sensor covariance and target

maneuvering index information and then using the appropriate

association and fusion algorithms. The situation when a coarsely

quantized RMS estimation error is available is also discussed. A

two-sensor tracking example is used to illustrate the effectiveness of

the proposed covariance reconstruction method for track fusion and

compared with a centralized interacting multiple model estimator.
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1. INTRODUCTION

In multisensor target tracking, each sensor can have
its own target state estimate based on the local sensor
measurements. Most existing communication networks
between local trackers/sensors transmit to a fusion cen-
ter the local track estimates–sometimes without any
estimation error covariances, sometimes with partial co-
variance information and only rarely with full covari-
ance information. In order to form a global picture of
the existing tracks, it is necessary to associate multi-
ple local tracks and fuse them to obtain the global tar-
get state estimates. Under this tracking configuration,
the fusion center can carry out this association and fu-
sion of the (latest) local track estimates on demand,
which, in general, is less frequent than the measurement
rate at each local sensor. Another important reason that
track fusion (TrkF) is a viable alternative to centralized
tracking (CenT), which requires transmission of all the
measurements to the fusion center, is that the perfor-
mance of TrkF is very close to that of CenT [4]. The
problem of associating tracks represented by their local
state estimates and covariances from multiple sources
has been studied extensively in literature. While differ-
ent sensors typically have independent measurement er-
rors, the local state estimation errors for the same target
are dependent due to the common process noise (and
the prior, if common). This dependence is character-
ized by the crosscovariances of the local estimation er-
rors [3]. Methods have been proposed to fuse the local
tracks that carry out decorrelation [11, 12, 13]. Other
techniques include track fusion that explicitly utilizes
the crosscovariance information in a Bayesian setting
[7, 10], with asynchronous sensors [1], and more gen-
erally, with possible common priors [15, 16, 17]. The
work of [20] dealt with simultaneous general track-to-
track association and bias estimation. In addition, the
“covariance intersection” method proposed in [14] can
fuse two estimates with unknown correlation. However,
it is a very conservative method that avoids the is-
sue of crosscovariances but may yield a fused covari-
ance with diagonal elements that indicate a degradation
in each component from the best estimate before fu-
sion [9].
A legacy sensor and tracking system is one that was

built in the past under different requirements, specifi-
cally, with no requirements to support network fusion.
Thus no hardware/software facilities (or inadequate fa-
cilities) were included in the system to support the kind
of track fusion that is desired now. To get the rele-
vant data that one would like out of the system (i.e.,
covariances) requires a significant hardware/software
modification to the system, which is impractical. Con-
cisely, legacy can be defined as “you are stuck with
what you’ve got.” Before fusing local tracks, the fusion
center has to decide whether they are from the same
target. Track association is a hypothesis testing prob-
lem where local tracks are considered as having com-
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mon origin (from the same target) vs. different ones
by comparing a certain test statistic with a threshold to
obtain desired test power [5, 18]. However, no previ-
ous results are available for the association and fusion
of local tracks with legacy trackers that do not provide
the necessary covariance information of the estimation
errors.
In this paper we first consider the approximation

of the covariance of the estimation error from a legacy
tracker with a fixed filter gain. Then we use a two-sensor
tracking scenario to compare the performance of the
track fusion algorithm with the centralized target state
estimator where the fusion center uses the state-of-the-
art interacting multiple model (IMM) algorithm. Both
the estimation accuracy and the credibility (consistency
[2]) of the distributed tracker are compared with those
of the centralized one. The results indicate that the
performance degradation is small even during target
maneuvers.
The rest of the paper is organized as follows. Sec-

tion 2 describes the model used for legacy track sources.
Section 3 presents a method to obtain the covariance of
a legacy filter’s track estimate as well as an approxi-
mation of the crosscovariance between two tracks. The
reconstruction of the track covariance from a coarsely
quantized estimation RMS error is also discussed. Sec-
tion 4 presents a tracking example where two distributed
tracking configurations are compared with the central-
ized estimator. Concluding remarks are provided in Sec-
tion 5.

2. LEGACY TRACK SOURCES

In this section the model used for legacy track
sources is formulated assuming the trackers are Kalman
filters. To simplify the discussion, the model is pre-
sented for one generic coordinate with the target mo-
tion given by a discretized continuous time white noise
acceleration (DCWNA) model [2]. For asynchronous
sensors this model should be used to consistently handle
the white process noise for all values of the sampling
interval.
For sampling interval T, the state and measurement

equations are

x(k+1) = Fx(k) + v(k) =
·
1 T

0 1

¸
x(k)+ v(k) (1)

z(k) =Hx(k) +w(k) = [1 0]x(k) +w(k) (2)

where v(k) is the zero mean white process noise se-
quence with covariance

E[v(k)v(k)0]
¢
=Q(tk+1¡ tk) =Q(T) =

264
T3

3
T2

2
T2

2
T

375 q̃
(3)

where q̃ is the (continuous time) process noise power
spectral density (PSD)1 and w(k) is zero mean white
measurement noise sequence, uncorrelated with the pro-
cess noise, with variance

E[w(k)2] = ¾2w: (4)

This describes the target motion along one dimension.
For target motion in 2 or 3 dimensions, the model
will consist of 2 or 3 such models with an appropriate
stacked state vector.
The target maneuvering index, subscripted by “c” to

indicate that it is based on the continuous time process
noise [2], is defined as

¸c =

s
q̃T3

¾2w
: (5)

Then the steady state filter gain is
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·
®

¯

T

¸0
(6)
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The steady state solution for the state estimation covari-
ance matrix is given by

P =
·
p11 p12

p12 p22

¸
=

264 ®
¯

T
¯

T

¯(®¡¯=2)
(1¡®)T2

375¾2w: (10)

The above solution is valid for the steady state of the
DCWNA filter, but only with the optimal values of ®
and ¯ as given in (7)—(8).
A legacy tracker uses a fixed gain W, not necessar-

ily the optimal one, in each of its ®-¯ filter updates and
sends the state estimates to the fusion center, typically,
without covariance information. Since track association
and track fusion algorithms require such information in
order to combine local tracks from different sources,
a procedure to obtain this missing information is dis-
cussed next.

3. APPROXIMATION OF THE ESTIMATION ERROR
COVARIANCE AND CROSSCOVARIANCE

Because of the time-varying target-sensor geometry,
an ®-¯ filter, even though it uses fixed gains, is not nec-
essarily in steady state. This is due to the nonstationar-
ity of the measurement noises, which is accounted for in

1See [2] on why it is incorrect to call this the variance of the process
noise.
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Subsection 3.1. Our model will assume that the tracking
filter has a “slowly varying” (quasi-) steady state. The
covariance of the target state estimate will be evaluated
accounting for the fact that the sensor measurements
(typically in polar or spherical coordinates for a radar),
while having uncorrelated measurement noises between
their components (range, azimuth/crossrange), have a
coupling (correlation) between the track state estimation
errors in different Cartesian coordinates. Subsection 3.2
deals with the case where the communication network
provides partial covariance information in addition to
the state estimates. A procedure to reconstruct the full
state covariance matrix is presented. Since in the real
world multiple sensors are practically never operating
in a synchronized manner, the procedure for track fu-
sion from asynchronous sensors is discussed in Sub-
section 3.3. Subsection 3.4 presents a simple method
to approximate the crosscovariances between the state
estimation errors of two local tracks from the same tar-
get by assuming constant correlation coefficients, whose
exact values are shown to vary relatively little over the
practical range of target maneuvering indices.
The hypothesis testing for track association and the

fusion equations with the crosscovariance can be found
in [3, Sec. 8.4].

3.1. Coupling Between Coordinates and
Nonstationarity

For tracking in more than one dimension of the
measurement space, the measurement covariance can
be converted from the sensor coordinates (typically
polar or spherical) into the coordinates in which the
state is defined (usually Cartesian).2 This will result in
correlation between the state estimation errors in the
Cartesian coordinates. It is important to preserve the
coupling between the coordinates when the uncertainty
ellipse for position is elongated and slanted, e.g., a
“cigar” with the main axes at 45± and 135±. Neglecting
the correlation between the coordinates would yield a
much larger uncertainty region.
To preserve the coupling between the state space

coordinates due to the measurements, the fusion center
should run the Joseph form of the covariance update
iteration3 at time k [2]

P(k) = [I¡WH][FP(k¡ 1)F 0+Q][I¡WH]0+WR(k)W0

(11)

with the appropriate sampling interval. The Joseph form
is needed because the legacy filter gain is not optimal
and only this equation is valid for the covariance (ac-
tually MSE matrix) update when arbitrary filter gains
are used. The process noise covariance Q should be se-
lected by the fusion center to model the target motion

2While some tracking systems keep the measurements in polar/spheri-
cal coordinates, the conversion to Cartesian allows exact debiasing
when necessary [2].
3A single time argument is used here for the covariance.

uncertainty to the extent possible. The filter gain W in
(11) should be the same as in the legacy filter. If W is
not known at the fusion center, it should be “replicated”
using (6). The measurement noise covariance R(k), as-
sumed to be known,4 in (11) is the covariance of the
measurements converted from polar to Cartesian. The
measurement conversion should be linearized at the lat-
est measurement or the measurement prediction using
the latest state. When P(k¡ 1) is unavailable at the fu-
sion center, one can assume that P(k¡ 1) = P(k) in (11),
resulting in an algebraic Riccati equation. This will yield
a (slowly) time-varying covariance matrix that accounts
for the nonstationarity of measurement noise.

3.2. Approximation of the Estimation Error Covariance
of Legacy Trackers with Partial Information

When the communication network can provide a
coarsely quantized (i.e., an approximate) 2-dimensional
root mean square (RMS) position error, denoted as
RMSp, to the fusion center, the state estimation error
covariance can be obtained as follows.
We shall model RMSp as the (steady state) error of

two independent ®-¯ filters, one in the range direction,
the other in the cross-range direction. Denote the mea-
surement noise RMS values in these directions as ¾r
and ¾£r, respectively. These are assumed to be known,
based on the radar specifications and the radar-target
geometry.
The position gains for these two filters are, accord-

ing to (6),
®r = ®(¸cr ) (12)

and
®£r = ®(¸c£r ) (13)

respectively, where the corresponding target maneuver-
ing indices are, similarly to (5),

¸cr =

s
q̃T3

¾2r
(14)

and

¸c£r =

s
q̃T3

¾2£r
(15)

with q̃ the continuous time process noise PSD that
models the motion uncertainty (in both the range and
cross-range directions, uncorrelated between them) and
T the sampling interval.
The RMS position error from the above filters is,

based on (10), given by

RMSp =
q
®r¾

2
r +®£r¾

2
£r: (16)

4The measurement noise variances are, particularly in azimuth/eleva-
tion (and thus in cross-range), dependent on the target SNR (inversely
proportional to the SNR [6]; in range the variance depends primarily
on the pulse waveform). However, unless one assumes these variances
as known (for an “average” SNR), one cannot reconstruct the track
errors. Consequently, R(k) is assumed known.
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Assuming the value of RMSp is available and the mea-
surement noise variances are known (as discussed previ-
ously), one can solve (16) (after substituting (14)—(15)
into (12)—(13) and the result into (16)) to find q̃. Once
this is obtained, one can use (10) or (11) to reconstruct
(approximately) the covariance of the entire state esti-
mate. Note, however, that while this is in a Cartesian
coordinate system, this system is aligned with the line
of sight from the radar to the target and it has to be ro-
tated into the local (common) Cartesian system, which
is, typically, East-North.
The above procedure allows to reconstruct (approx-

imately) the estimation error covariance of the legacy
tracker from a coarsely quantized position RMS error,
which is assumed to be conveyed by a communica-
tion network. A similar approach can be taken when
RMSp is a position prediction error, as well as for the
3-dimensional case.

3.3. Prediction to Fusion Time for Asynchronous
Sensors

For asynchronous sensors, the state prediction (to
the time for which fusion will be carried out) based on
the legacy tracker’s latest estimate should be used by the
fusion center. Assume that the fusion is done at time k
and the most recent estimate at the fusion center from
the legacy tracker is x̂(·) at time5 ·, with · < k. Then
the fusion center needs to (i) approximate the estimation
error covariance6 P(·) at time · using (10) or (11)
and (ii) apply the standard prediction equations given
by

x̂(k) = F(k,·)x̂(·) (17)

P(k) = F(k,·)P(·)F(k,·)0+Q(k,·) (18)

to obtain the state prediction and the corresponding er-
ror covariance for time k. For the motion model (1),
Q(k,·) is given by (3) with T = tk ¡ t·.
Thus what is needed to evaluate the covariance of

the estimate from a legacy tracker are:

² the sampling times
² the process noise PSD
² the measurement noise covariance.

It should be noted that the parameters based on
which the legacy tracker has been designed are unlikely
to be the same as listed above. Thus, what the fusion
center should do is to replicate the performance of the
legacy tracker to the extent possible.

5We use for simplicity the notations · and k instead of t· and tk .
6A single time argument is used here for the covariance. This covari-
ance can be an updated covariance at the current time for one sensor,
or a prediction to the current time for another sensor.

3.4. Approximation of the Crosscovariance of the
Estimation Errors

When two local tracks have correlated estimation
errors, assuming they are operating synchronously7 and
use the same target motion and measurement models,
in the steady state, the crosscovariance matrix is given
by [3]

P£ = [I¡WH][FP£F 0+Q][I¡WH]0: (19)

The above Lyapunov type matrix equation can be solved
numerically for any given target maneuvering index
by simple forward iteration starting from P£ = 0. For
a distributed tracking system, the calculation of the
crosscovariance using (19) is not practical.
The following approximation is considered [8]. De-

note by Pij the approximate crosscovariance matrix be-
tween local tracks i and j. Each element of Pij , which
is a 2£ 2 matrix for the model considered in (1), is ap-
proximated by constant correlation coefficients as fol-
lows

Pijlm = ½lm[P
i
llP

j
mm]

1=2, l,m= 1,2 (20)

where ½11 is the position-position correlation coeffi-
cient, ½12 is the position-velocity correlation coefficient
and ½22 is the velocity-velocity correlation coefficient.
Assuming equal variances of the measurement er-

ror for both sensors, we can solve the Lyapunov equa-
tion for the steady state DCWNA model. The resulting
crosscorrelation coefficients between the estimation er-
rors from the two local trackers, namely, ½11, ½22 and
½12, are shown in Fig. 1 for target maneuvering index
values within [0:05,2]. These results are similar to those
in [8] where the discrete time white noise accelera-
tion model (DWNA) [2] is used. For the simulations
to be presented in Section 4, we choose, in view of
the fact that, as it can be seen from Fig. 1, these co-
efficients are nearly constant, the following fixed val-
ues

½11 = 0:15, ½12 = 0:25, ½22 = 0:7 (21)

to compute the approximate crosscovariance according
to (20).
Legacy trackers can be assumed as being decou-

pled across coordinates since the process noise is as-
sumed uncorrelated between different coordinates. Con-
sequently, the crosscorrelation between one sensor’s
tracking errors in one coordinate and another sensor’s
tracking errors in another coordinate will be zero due to
the lack of common process noise. Thus the crosscovari-
ance matrix will be assumed to have blocks consisting
of zeros between different coordinates.

7The exact general recursion of the crosscovariance for asynchronous
sensors is presented in the Appendix.
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Fig. 1. Crosscorrelation coefficients vs. target maneuvering index for DCWNA model.

Fig. 2. Target trajectory with true positions where measurements are made by the two sensors.

4. EXAMPLE OF TRACK FUSION WITH A LEGACY
TRACK SOURCE

We consider a ground target tracking scenario where
two sensors are located at (¡50,0) km and (50,0) km,

respectively. Both sensors measure the target range and
bearing with the same standard deviations of the mea-
surement error given by ¾r = 50 m and ¾b = 2 mrad.
The sampling interval of sensor 1 is T1 = 2 s while the
sampling interval of sensor 2 is T2 = 5 s.
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Fig. 3. Steady state filter gains vs. target maneuvering index for DCWMA model.

The target is initially at (0,86:6) km moving at
a speed of 300 m/s toward south-east on a course
of approximately ¡135±. Then at t= 15 s the target
makes a course change with a constant turn rate of 4±/s
(acceleration of about 2.1 g over a duration Tman of about
11 s) and heads toward east. The target makes a second
course change at t= 35 s with a constant turn rate of
4±/s and heads toward north-east. The target trajectory
is shown in Fig. 2 where the true target positions are
indicated at the time instances at which a measurement
is made by sensor 1 or sensor 2. The total time for the
target to complete the designated trajectory is 60 s. Note
that the target range is around 100 km at the beginning
for both sensors, where the standard deviation of the
crossrange measurement error is around 200 m. The true
target motion has no process noise in this case.
We consider the following three tracking configura-

tions for performance comparison.
(i) A centralized estimator which uses an IMM with

two models and sequentially updates the target state
with measurements from both sensors. This IMM es-
timator has a DCWNA model with low process noise
PSD q̃l to capture the uniform target motion and a
DCWNA model with high process noise PSD q̃h to
capture the two turns. We use q̃l = 1 m

2=s3 and q̃h =
8000 m2=s3 which, for T1 = 2 s, corresponds to a target
maneuvering of

p
q̃h=T1 ¼ 6:4 g. The process noise is

the same in east and north of the Cartesian coordinates
and uncorrelated between these coordinates. The transi-
tion between the modes is modeled according to a con-
tinuous time Markov chain with the expected sojourn
times [2, Sec. 11.7.3] in these modes given by 1=¸1

and 1=¸2, respectively. These correspond to exponential
sojourn time distributions with parameters ¸1 and ¸2,
respectively. The transition probability matrix between
the two models (generalized version of Eq. (11.6.7-1)
in [2]) from any time t1 to time t2 is [19]

¦(t2, t1) =
1

¸1 +¸2

·
¸2 +¸1e

¡(¸1+¸2)T ¸1¡¸1e¡(¸1+¸2)T

¸2¡¸2e¡(¸1+¸2)T ¸1 +¸2e
¡(¸1+¸2)T

¸
(22)

where T = jt2¡ t1j. For the scenario used in simulation,
we chose ¸1 = (1=20) s

¡1 and ¸2 = (1=10) s
¡1.

(ii) In the first decentralized tracking configuration
both sensor 1 and sensor 2 use an IMM estimator and
the fusion center fuses the local estimates every TF =
10 s using the two local state estimates with the corre-
sponding covariances. The local tracker at sensor 1 uses
q̃l = 1 m

2=s3 and q̃h = 8000 m
2=s3. The local tracker at

sensor 2 uses q̃l = 1 m
2=s3 and q̃h = 20000 m

2=s3.
(iii) In the second decentralized tracking configura-

tion sensor 1 uses the same IMM estimator as in (ii)
while sensor 2 uses a legacy filter (in both north and
east coordinates) with a fixed filter gain. The optimal
filter gain components ® and ¯ vs. the target maneu-
vering index are shown in Fig. 3. The values we used
are ®= 0:86 and ¯ = 0:74 which correspond to a target
maneuvering index around 2. To implement the track-
to-track fusion with a legacy tracker, the fusion cen-
ter needs first to obtain the covariance (approximate
MSE matrix) of the local state estimate from the legacy
tracker. This is done according to the procedure dis-
cussed in Section 3.1. The track fusion is done with
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Fig. 4. RMS position errors for centralized IMM estimator vs. two local IMM estimators.

Fig. 5. RMS position errors for centralized IMM estimator vs. two local estimators (IMM and legacy).

crosscovariances calculated using the fixed crosscorre-
lation coefficients as in (ii).
Fig. 4 shows the root mean square (RMS) position

errors of the centralized IMM estimator vs. the two
local IMM estimators at sensor 1 and sensor 2 from

100 Monte Carlo runs. Special symbols indicate the
times when track-to-track fusion is carried out. The
local tracker at sensor 1 has better estimation accuracy
in position than the local tracker at sensor 2 since it has
a higher measurement rate.
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Fig. 6. Comparison of the RMS position errors for centralized IMM estimator vs. track fusion with an IMM estimator and a legacy filter.

Fig. 5 shows the RMS position errors of the central-
ized IMM estimator vs. two local estimators at sensor
1 and sensor 2 where the local tracker at sensor 1 uses
an IMM estimator and the local tracker at sensor 2 uses
a legacy filter from 100 Monte Carlo runs. Compared
with Fig. 4, we can see that the performance degrades
when sensor 2 uses a legacy filter rather than an IMM
estimator.
Fig. 6 shows the RMS position errors at the fusion

center for the above three tracking configurations as
well as that by sensor 1 alone. In configurations (ii)
and (iii), both approximate crosscovariance and zero
crosscovariance were used in the track fusion procedure.
We can see that the track fusion of two local IMM
estimators has the RMS position error close to that of the
centralized estimator. Assuming zero crosscovariance
does not affect the position estimation accuracy by
much. However, the track fusion with a legacy filter
has a moderate performance gap compared with the
centralized estimator for the RMS position error. We
can also see that the performance of the fused estimate
using a legacy track is clearly better than that using
sensor 1 alone.
Fig. 7 shows the normalized estimation error squared

(NEES) [2] at the fusion center for the above three
tracking configurations as well as that by sensor 1
alone. The 99% percent confidence interval is also
shown assuming that the NEES statistic is chi-square
distributed with the appropriate degrees of freedom. We
can see that nearly all fusion results are pessimistic
during the non-maneuver motion segments owing to the
zero process noise of the true target motion. However,
configurations (ii) and (iii) yield larger NEES than
the centralized estimator during the target turns, i.e.,

the estimation error covariance at the fusion center is
more optimistic compared with that of the single sensor
estimate. Assuming zero crosscovariance can make the
situation even worse. Thus caution has to be exercised
when fusing local estimates that are not consistent with
their calculated covariances.

5. CONCLUDING REMARKS

In this paper a procedure for reconstruction of legacy
trackers’ state estimation error covariances was de-
scribed for use in track-to-track association and fusion
algorithms that account for the crosscovariance of the
estimation errors between local tracks. In addition, a
practical way to approximate these crosscovariances has
been presented. A two-sensor tracking example, with
one of the trackers being a legacy tracker, indicates the
effectiveness of the resulting distributed tracking system
with track fusion on demand. The performance of this
system exhibits only a modest degradation compared
with a centralized tracker using an interacting multiple
model estimator.

APPENDIX. THE EXACT CROSSCOVARIANCE FOR
ASYNCHRONOUS SENSORS

The recursion for the crosscovariance given in Eq.
(8.4.2-3) of [3] is for synchronous sensors. The recur-
sion for the case of asynchronous sensors is as follows.
Let ftimgN

i

m=1 and ftjngN
j

n=1 be the sampling times at
sensor i and j, respectively. The union of these sets,
with the times ordered, is denoted as

T ij ¢=ftijk g
Ni+Nj
k=1 : (23)
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Fig. 7. Comparison of the NEES for centralized IMM estimator vs. track fusion with an IMM estimator and a legacy filter.

Then the generalized version of the crosscovariance
recursion will be iterated on the ordered union set (23)
as follows

Pij(tijk )
¢
=E[x̃i(tijk )x̃

j(tijk )
0]

= [I¡Wi(tijk )H
i(tijk )][F(t

ij
k , t

ij
k¡1)P

ij(tijk ¡ 1)F(t
ij
k , t

ij
k¡1)

0

+Q(tijk , t
ij
k¡1)][I¡W

j(tijk )H
j(tijk )]

0 (24)

where the estimation error x̃ has tijk as its single argument
indicating the current time. This error might correspond
to a current estimate, or a prediction as in (17). The gain
for filter i in the above is

Wi(tijk ) = 0 if tijk = t
j
n (25)

i.e., it is zero at the times when only filter j carries
out an update, and the other way around; F(tijk , t

ij
k¡1) is

the state transition matrix from tijk¡1 to t
ij
k and Q(t

ij
k , t

ij
k¡1)

is the covariance of the process noise over the interval
tijk ¡ t

ij
k¡1. The initial condition for (25) is P

ij(tij1 ) = 0,
assuming the filters use independent initial information.
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